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A simple test based on Bayesian statistics for the presence of minority

populations in single-crystal structure refinement is presented. The test is

illustrated by analysis of photocrystallographic experiments on single crystals of

ruthenium–sulfur-dioxide-based complexes. In data sets collected after irradia-

tion with light, conventional refinements of the populations of different

metastable states to values below 4% are shown to be statistically significant.

The results also confirm that the photo-induced states are absent from data

collected in the dark.

1. Introduction

A number of photolinkage isomerism complexes have now

been studied using single-crystal photocrystallographic

methods (Kovalevsky et al., 2002, 2003; Bowes et al., 2006;

Schaniel et al., 2005; Schaniel, Cormary et al., 2007; Schaniel,

Woike et al., 2007; Phillips et al., 2010). With some notable

exceptions (Warren et al., 2009; Cormary et al., 2009), only

relatively small photoconversion fractions are generally

achievable; indeed, too high a metastable-state population

may place the crystal under such high internal stress that it

shatters (Cole, 2004). Small minority structural populations

such as these pose problems in data analysis: their occupancy

will be highly correlated with other variables, such as their

atomic displacement parameters and parameters associated

with overlapping atoms in the disordered periodic model. As a

result, the accuracy of the refined population is often suspect.

In extreme cases it may not be clear whether or not photo-

excitation has actually been achieved.

The question of whether or not there is sufficient evidence

to introduce a metastable geometry into the crystallographic

model of ‘light’ data is a particular case of a more general data-

fitting problem well known in crystallography and across the

sciences. Adding a new parameter to a model cannot increase

the best-fit sum-of-squares statistic, and in practice invariably

decreases it, regardless of whether or not the added parameter

has any physical meaning. Of course, a single sum-of-squares

value is a rather crude measure of the goodness of fit of a given

model, and experts in a field will recognize features indicating

an unsatisfactory fit: for instance, in crystallography, large

residual peaks in the Fourier difference density of a model will

be suspicious no matter how good the R factor. Nonetheless,

careful analysis may be required to distinguish between a

genuinely good model and an overfitted one.

The classical approach to this problem is to use a likelihood

ratio test: either the F test or a crystallographically convenient

variation such as the R test (Hamilton, 1965). These tests are

applicable to nested models, in which the null model H0

consists of a more general model H1 with the addition of a

linear hypothesis. Suppose that H0 contains q additional linear

constraints compared to H1, and therefore has q fewer inde-

pendent parameters. Hamilton (1965), for instance, gives the

example of comparing certain isotropic and anisotropic

refinements, in which H0, the isotropic model, consists of H1,

the anisotropic model, with the addition of the linear

constraints that U11 ¼ U22 ¼ U33 and U12 ¼ U13 ¼ U23 ¼ 0

for all atoms (where Uij is the atomic displacement tensor).

Given observed data (structure factors) F2
o, consider the

likelihood ratio test statistic � ¼ PðF2
ojH0Þ=PðF

2
ojH1Þ, where

P denotes probability. If H0 is true, then, as the number of

observations goes to infinity, �2 log � converges under

suitable conditions to a �2 distribution with q degrees of

freedom (Wilks, 1938). Thus the hypothesis H0 can be tested

by comparing the observed likelihood ratio with a suitable �2

distribution. A statistic which is very unlikely under this

distribution (as indicated by a small p value) is interpreted as

evidence against H0.

The assumptions leading to the R test are not always

appropriate, and several alternatives have been proposed to

overcome these difficulties in particular cases. Objections to

Hamilton’s assumptions fall into three main categories. First,

the dimension of the hypothesis or the number of degrees of

freedom may not be clear. This is the case, for instance, when

comparing the two possible absolute configurations of a

structural model (Rogers, 1981), leading to the now standard

method of representing the configuration by a refinable
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parameter (Flack, 1983). Second, the assumption of linearity

may not be justifiable (indeed, this may be the cause

of the first problem); and in some cases, such as when the

hypotheses being compared differ only in the atom assignment

so that the same set of variables are refined in both

models, this assumption is unnecessary (Rothstein et al., 1978).

Third, it is now well established that F tests in general rely

strongly on the normality of the residual distributions whose

variances are being compared (Box, 1953, and references

therein). It has been known for some time that this assump-

tion, and the assumption that the means of the residuals

should be zero, are often untrue in practice (Vacca &

Kennard, 1977).

For the purpose of analysing photocrystallographic data, a

fourth objection becomes important. Among the conditions

for the �2 distribution to be obtained is the topological

requirement that the parameter space �0 of H0 must be in the

interior of the parameter space �1 of H1 and that both spaces

must be open (Kent, 1982; Protassov et al., 2002). In other

words, if the null hypothesis H0 is a boundary case of H1, the

likelihood ratio distribution is not guaranteed to converge to a

�2 distribution, and the F and R tests are no longer tractable

since their null distributions are not known. In particular, in

photocrystallographic experiments, among other parameters

such as the locations of the atoms in the metastable state, the

metastable-state occupancy fraction � is refined. Since H0 has

� ¼ 0 (i.e., no metastable state present) and � cannot be

negative, the topological condition above is not met and

Hamilton’s R test should not be used.

This topological condition has recently been discussed in

the astrophysics literature (Protassov et al., 2002), where

analysis analogous to the above applies to the possible

presence of a new peak in a spectrum. However, this result

does not appear to be used widely in crystallography.

As a result of the topological criterion, we must look else-

where for a statistical test that is suitable to detect the

presence of a metastable state. One promising avenue is the

field of Bayesian statistics, which has been applied to many

aspects of crystallography (Gilmore, 1996), and which has

been suggested as a means to overcome the boundary-case

problem in astrophysics (Protassov et al., 2002; Trotta, 2008).

Rather than calculating the probability that a null hypothesis

is capable of explaining the observed data, these methods

proceed by estimating the relative likelihood of two different

models, given the observed data.

2. Theory

The following analysis follows the method of Gull (1988), as

presented by Sivia (2006, p. 78). Label the ground-state model,

in which there is no metastable state present, A, and the model

including some fraction of a metastable state B. Then B has

more parameters than A; we will consider first the case where

there is a single such parameter � before generalizing to

multiple parameters.

We would like to estimate the ratio PðAjF2
oÞ=PðBjF

2
oÞ,

where F2
o = ðF2

o1; F2
o2; . . . ;F2

onÞ are the observed intensities.

Applying Bayes’ theorem to the numerator and denominator

gives

PðAjF2
oÞ

PðBjF2
oÞ
¼
PðF2

ojAÞ

PðF2
ojBÞ
�
PðAÞ

PðBÞ
: ð1Þ

The factor PðAÞ=PðBÞ reflects our relative belief in the two

models irrespective of (prior to considering) the data. We will

adopt an agnostic position as to whether or not a metastable

state has been experimentally generated by setting this ratio

to 1.

To evaluate PðF2
ojBÞ, we must take into account the extra

variable �:

PðF2
ojBÞ ¼

R
PðF2

oj�;BÞPð�jBÞ d�: ð2Þ

The first part of this integral is the probability of observing

the data within model B for a given value of �. We approx-

imate this by a Gaussian distribution centred on the best-fit

value �0 with standard deviation estimated by the fitting

procedure:

PðF2
oj�;BÞ ¼ PðF2

oj�0;BÞ exp �
ð� � �0Þ

2

2�ð�Þ2

� �
: ð3Þ

The second part of the integral in equation (2) is the prior

likelihood of the parameters �, again given model B. For

simplicity we take this as constant over some range

�min � � � �max and zero elsewhere. Provided that �0 lies

comfortably within this range, the Gaussian in equation (3)

will be very close to zero when evaluated outside this

range. Accordingly, rather than integrating from �min to �max

in equation (2), we can integrate over the entire real line to

give

PðF2
ojBÞ ¼

PðF2
oj�0;BÞ

�max � �min

Z1
�1

exp �
ð� � �0Þ

2

2�ð�Þ2

� �
d� ð4Þ

¼ ð2�Þ1=2�ð�Þ
PðF2

oj�0;BÞ

�prior�
; ð5Þ

where �prior� ¼ �max � �min. Generalizing to the case of

multiple parameters h ¼ ð�1; �2; . . .Þ gives

PðF2
ojBÞ ¼ PðF

2
ojh0;BÞ

Y
i

ð2�Þ1=2�ð�iÞ

�prior�
i
: ð6Þ

One particular parameter that must be included in model B is

the occupancy � of the metastable state. We treat this sepa-

rately rather than including it in the vector h with the other

parameters. This is because in marginal cases, where the

� value obtained from least-squares fitting may well be

comparable to its estimated standard deviation �ð�Þ, the

Gaussian corresponding to equation (3) may be truncated by

the requirement that � � 0. In this case, the marginalization

integral can be explicitly evaluated:

PðF2
ojh0;BÞ ¼

PðF2
oj�0; h0;BÞ

�max � 0

Z�max

0

exp �
ð�� �0Þ

2

2�ð�Þ2

� �
d�: ð7Þ
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Now, considering the standard assumptions for least-squares

analysis (independent data and Gaussian noise), we can

express the probabilities of observing data F2
o under our two

models in terms of the least-squares residuals of these models.

The notation on the left-hand side is intended to reflect that,

once particular values of the parameters have been specified,

these equations are identical for the two models. Fo and Fc

refer, respectively, to the observed and calculated (from the

fitted model) structure factors

P F2
o

�����
A

�0; h0;B

0
@

1
A ¼Yn

i

1

ð2�Þ1=2�ðF2
ojÞ

exp

"
�
Xn

j

ðF2
oj � FcjÞ

2

2�ðF2
ojÞ

2

#
:

ð8Þ

Note that we have deliberately not included restraints in these

equations: we treat them as an integral part of their respective

models.

We take the � values in equation (8) from the weighting

scheme generated in the least-squares analysis. As an example,

we consider the frequently used scheme from SHELX (Shel-

drick, 2008):

1

�ðF2
oÞ

2
¼ w ¼

1

�0ðF2
oÞ

2
þ ðaPÞ2 þ bP

; ð9Þ

where w is the weight used by SHELX; � is the equivalent

standard deviation, used in the following analysis; �0 is the

standard deviation estimated during data collection; a and

b are chosen to achieve a flat analysis of variance (i.e., a �2

value roughly independent of intensity or resolution); and

P ¼ 1
3 maxf0; F2

og þ
2
3 F2

c .

Combining equations (1) and (6)–(8) gives the likelihood

ratio we would like to evaluate. For convenience, we will

actually calculate the logarithm of this ratio:

ln
PðAjF2

oÞ

PðBjF2
oÞ

� �
¼ �

Xn

j

�
ðF2

oj � F2
cjÞ

2

2�ðF2
ojÞ

2 þ ln �ðF2
ojÞ

#
A

þ
Xn

j

�
ðF2

oj � F2
cjÞ

2

2�ðF2
ojÞ

2
þ ln �ðF2

ojÞ

#
B

þ
XpB�pA

i

ln

�
�prior�

i

ð2�Þ1=2�ð�iÞ

#

þ ln
�maxR �max

0 exp �ð�� �0Þ
2=2�ð�Þ2

� �
d�

( )
: ð10Þ

At this stage the likelihood ratio can already be evaluated

directly; however, we will simplify this expression slightly for

ease of calculation and discussion. First, we introduce the

expression for the reduced goodness of fit S reported by

SHELX:

S ¼
1

n� p

Xn

j

ðF2
oj � F2

cjÞ
2

�ðF2
ojÞ

2

" #1=2

; ð11Þ

where n is the number of observations, p the number of

parameters and S the (non-restrained) goodness of fit at the

optimized values of all parameters.

Second, we note that it is tempting to cancel the ln � terms

from the first two sums in equation (10). However, this would

not be valid since, although the uncertainties reported by the

integration software are identical for both models, the � values

used in model refinement depend via equation (9) on P and

hence on the calculated structure factors F2
cj, which will

depend on the particular model being refined.

We then break equation (10) into the sum of three terms,

thus writing

ln

�
PðAjF2

oÞ

PðBjF2
oÞ

�
¼ X þW þO; ð12aÞ

X ¼ �
1

2
½ðn� pAÞS

2
A � ðn� pBÞS

2
B�; ð12bÞ

W ¼ �
Xn

j

½ln �ðF2
ojÞA � ln �ðF2

ojÞB�; ð12cÞ

O ¼
XpB�pA

i

ln

�
�prior�

i

ð2�Þ1=2�ð�iÞ

�

þ ln
�maxR �max

0 exp �ð�� �0Þ
2=2�ð�Þ2

� �
d�

( )
: ð12dÞ

The ‘fit’ term X reflects the relative goodness-of-fit values for

the models. The model with more parameters, B, will be

favoured by this term since these parameters allow a smaller S

value.

The ‘weighting’ term W penalizes models where the

weighting scheme has, on average, increased the uncertainty of

the observed data. Before actually evaluating this term, it is

not obvious which model it will favour.

Finally, the ‘Ockham factor’ O acts to penalize B for

introducing more parameters. Which model is preferable

depends on the relative magnitude of the three terms. If the

sum of these terms is positive, model A is more probable and

the crystal is probably entirely in its original ground state; if it

is negative, then B is more probable and there is good

evidence that some fractional occupancy of a metastable state

has been generated.

These terms behave qualitatively as expected. A low S value

for either model favours that model. Counterintuitively, it

appears at first that decreasing p for a particular model will

count against that model, but in practice any such change in a

good model will be compensated for by a decrease in S: the

ðn� pÞ factor is simply compensating for the ‘reduction’

performed in calculating S in the first place. A large prior

range for the parameters in B will count against it: the less we

are prepared to say about any parameter, the more we are

simply using it as a ‘fudge factor’. On the other hand, a small

uncertainty in the refined value of any parameter counts

against B: if the value of a parameter is not well known prior

to the experiment, more evidence is required to claim that, as

a result of the experiment, it is now known to a high level of

precision than to claim that it has only approximately been

measured. Either model is penalized if it requires substantial
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numbers of reflections to be downweighted to achieve the flat

analysis of variance that is the goal of the weighting proce-

dure.1

3. Three examples: evidence for metastable geometries
in Ru–SO2-based complexes

To exemplify this analysis, we have applied it to several

published studies of complexes in the [Ru(SO2)(NH3)4X]Y

family, where the trans ligand X and counterion Y vary. In

these materials, partial occupancies of two different meta-

stable SO2 coordination geometries, often denoted MS1

and MS2, can be induced by irradiation with light at low

temperatures, although the original ground state invariably

remains the major structural component even after irradiation

(Kovalevsky et al., 2002, 2003; Bowes et al., 2006; Phillips et al.,

2010). In the ground state (GS), the SO2 ligand binds to the

RuII ion through the S atom; in MS2, it binds in side-on

fashion through both the S and an O atom; while in MS1, the

least stable of these states, it binds end-on, through an O atom.

In the following examples, we consider the cases first where

the metastable states are necessarily absent, because the

crystal has been kept in the dark, and where a metastable state

is clearly present, before proceeding to more complex data

sets.

3.1. Evidence for MS2 before and after irradiation at 100 K

The first example consists of two data sets collected

from the same crystal of aquatetraammine(sulfur dioxide)-

ruthenium(II) ð�Þ-camphorsulfonate, [Ru(SO2)(NH3)4-

(H2O)](C10H15SO3)2, (1). At 100 K, this compound is known

to have a single metastable state of MS2 geometry (Phillips et

al., 2010). A ‘dark’ data set was collected after the crystal had

been cooled to 100 K in the dark; the crystal was then irra-

diated with an Xe lamp for 2 h at 100 K, after which a ‘light’

data set was collected using the same data-collection strategy

as the first. Refinement of all parameters against the ‘light’

data with SHELX (Sheldrick, 2008) indicated the presence of

the metastable state at a fraction of only � = 3.6 (5)%. We will

use the method described above to check whether this is real

or an artefact of an overmodelled data set.

In order to evaluate equation (12d) we need to decide on a

suitable �prior�
i for each extra parameter �i associated with the

metastable-state model. There are 28 such parameters: three

for the position and six for the anisotropic displacement

parameter of each of the three atoms in the SO2 unit, plus

the photoconversion fraction �. We set the prior upper limit

on photoconversion to �max ¼ 0:5 (otherwise we would be

looking for traces of the ground state against a background of

the metastable one) and set �� to 1 Å for atomic positions and

0.05 Å2 for displacement parameters. This choice of ‘prior’

reflects the fact that we know approximately where to expect

the metastable-state atoms but are not confident of their

precise electron distribution.

The results of this analysis are shown in Table 1. As

expected, in both cases the ‘fit’ term X favours model B, while

the ‘Ockham factor’ O favours model A. Note that, because of

the definition of the reduced goodness of fit, an equal S value

in a model with more parameters indicates a better fit. In the

case of the ‘dark’ data, the Ockham factor outweighs the fit

term, indicating that it is roughly expðX þW þOÞ ’ 400

times more probable that there is no metastable state present

than that 0.9% photoconversion has genuinely been achieved.

However, in the case of the ‘light’ data, despite the relatively

small (< 4%) photoconversion fraction achieved, this analysis

shows that it is vastly (calculated to be 32 orders of magnitude)

more probable that the metastable state was indeed generated

than that the crystal remained entirely in the ground state.

Moreover, these results are robust to any sensible variation

in the prior limits used: varying these to favour model A

demonstrates, for instance, that the ‘light’ data do contain

enough information to deduce the presence and geometry of

the photo-induced state even if this were not previously

known. This is plausible since the geometry of these meta-

stable states was first unambiguously characterized by

precisely this sort of photocrystallographic experiment.

3.2. Evidence for MS1 after irradiation at 100 K

Having seen that the test confirms crystallographic intuition

in cases where it is relatively clear that this is correct, a more

complex situation may be considered. It has recently been

shown that the O-bound metastable state, MS1, can be

generated in coexistence with MS2 and GS in compound (1) at

100 K (Phillips et al., 2012). This raises the question of whether

the published synchrotron data for this and the related

compound tetraammine(isonicotinamide)(sulfur dioxide)-

ruthenium(II) tosylate, [Ru(SO2)(NH3)4(C6H6N2O)]-

(C7H7SO3)2, (2) (Phillips et al., 2010), also contain evidence for

small populations of MS1. The same analysis was therefore

applied. In this case, model A contains both GS and MS2 while

model B also includes MS1. Compound (2) has two crystal-

lographically independent excitation centres of which we only
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Table 1
Comparison of the ground-only (A) and ground-plus-metastable (B)
models for a ‘dark’ and ‘light’ data set collected from compound (1).

‘Dark’ data ‘Light’ data

A B A B

n 7495 7495 7488 7488
p 470 498 470 498
S 1.049 1.049 1.056 1.046
�0 0.0088 0.0364
�ð�0Þ 0.0044 0.0051
X �13.4 �88.2
W �2.4 �17.9
O 21.8 31.1
Total 6.0 �75.0

1 A spreadsheet template for facilitating the Bayesian calculation presented
here is available from the IUCr electronic archives (Reference: SC5046).
Services for accessing this file are described at the back of the journal.



considered possible MS1 excitation at one [labelled Ru51 in

Phillips et al. (2010)].

The same priors were used for the different types of para-

meters as in the previous example. For compound (1), model B

required 29 new parameters: the same 28 as in the previous

example, plus a further occupancy parameter for the ground

state (although note that the extra state in model B, to which

these extra parameters refer, is now MS1 rather than MS2 in

the previous example). This new occupancy parameter reflects

the fact that, in SHELX, two parameters can be constrained

to sum to unity while three or more parameters must be

restrained to a constant sum. The inclusion of this extra

restraint, however, ensures that the extraneous parameter

does not bias the test in favour of model A. For compound (2),

model B required 57 new parameters to account for MS1:

three position parameters plus six atomic displacement para-

meters for each of six atoms (i.e., two crystallographically

independent MS1 geometries) plus three occupancy para-

meters (for the GS, MS1 and MS2 states). Table 2 shows that

the resulting evidence is overwhelmingly in favour of the

models that include MS1.

3.3. Evidence for MS1 decay at 120 K after irradiation at
100 K

Finally, we consider a set of data collected in order to

monitor the decay of MS1 over several hours (Phillips et al.,

2012). A single crystal of compound (1) was cooled in the dark

to 100 K, where it was irradiated with light as described in x3.1.

A full data collection revealed that populations of 13.8% MS1

and 11.5% MS2 had been generated. The temperature was

then raised to 120 K, where the crystal was held in the dark

while repeated collections of the same set of frames were

performed. The 100 K geometries of each ion were imported

as rigid bodies into the 120 K refinement, taking small varia-

tions in the cell parameters into account. The approximation

entailed in this procedure is justifiable since the small change

in temperature will affect the state occupancies far more than

the molecular geometries. Refinement of the fractional occu-

pancies while holding the other model parameters constant

revealed that MS1 decays to MS2 over a period of several

hours at this temperature, and allowed the associated kinetic

parameters to be estimated.

We again apply the analysis described above to evaluate the

evidence for a nonzero MS1 population in each of these data

sets. Here, as in x3.2, model A comprises GS and MS2 while

model B also includes MS1. Note that because the atomic

positions of MS1 were not refined during the decay process, in

this analysis we must consider these values as being fixed at

their 100 K values in model B rather than being parameters of

this model.

As before, we take the prior range for Uij parameters,

�priorUij, to be 0.05 Å2 , and set �max ¼ 0:5 (although the latter

could be reduced in this case of decay). The results of the

model comparison are presented in Table 3. These show that

the probability ratio PðAjF2
oÞ=PðBjF

2
oÞ increases with time as

the fraction � of MS1 decreases, as one might expect.

However, even at the end of the analysis, there is still clear

evidence that some MS1 persists.

4. Discussion and conclusions

In these examples, the results of the proposed test accord with

crystallographic intuition. When the sample has not been

exposed to light, the test shows no evidence of the metastable

state; but it concludes that there is good evidence for photo-

conversion in the ‘light’ data sets despite the low refined

populations.

Despite the theoretical reasons not to use the R test in this

case, it is interesting to consider the conclusions at which it

would arrive. In fact, applying the R test to the examples in

xx3.1 and 3.2 produces equivalent results to the analysis

presented here: in the ‘dark’ data, there is no evidence at the

5% significance level for any metastable state, whereas in each

set of ‘light’ data, there is evidence for the relevant metastable

state at this level of significance. Nonetheless, it is reassuring

to be able to place these empirical conclusions on a sturdy

theoretical footing. The example in x3.3 is more subtle: while

the R test shows evidence for the metastable state in the first

seven successive data collections after irradiating the crystal,

runs 8 and 9 marginally fail the test at the 5% significance

level. This is not a contradiction: it means that the likelihood

that the metastable state is absent is not negligibly small, but

that it remains more likely still that the metastable state

persists.

The difference between the results of the Bayesian and

F-test approaches should not be taken as an indication that

the statistical apparatus involved has any greater intrinsic

power. Rather, the value of the approach presented here is

that it allows a different question to be asked, which in some

circumstances will be more relevant. The HamiltonR test asks

whether, if the null hypothesis were true (e.g., no metastable

state were in fact present), there would be a substantial chance

of observing a likelihood ratio at least as favourable to the

alternative hypothesis as the one actually determined in the

experiment. The Bayesian approach presented here asks for

the relative likelihood of two models, given the experimentally

determined data. One limitation of the latter approach is that
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Table 2
Comparison of GS + MS2 models without (A) and with MS1 (B), for
‘light’ data collected from compounds (1) and (2).

Compound (1) Compound (2)

A B A B

n 9304 9304 16762 16762
p 532 561 973 1030
S 0.806 0.802 1.141 1.115
�0(MS1) 0.031 0.041†
�ð�0Þ 0.004 0.003
X �38.9 �495.1
W �6.8 �19.7
O 29.5 93.5
Total �16.2 �421.3

† Two geometries, with populations equal within experimental error.



it leaves the possibility open that a third model might be more

likely than either of the two being compared; so it will be most

convincing in cases, such as the photocrystallographic exam-

ples presented here, when there is strong external evidence

that only two (or, generally, a few) given models are worth

considering.

We further note that, due to the deliberately simple

formulation of the Bayesian approach that we employ, the

numerical values obtained for the likelihood ratios are rela-

tively crude estimates. Thus, for example, while it is clear that

the ratios reported in Table 2 overwhelmingly favour the

‘light’ models, we cannot expect to take literally the apparent

result that these models are tens or even hundreds of orders of

magnitude more likely than the ‘dark’ alternatives. We

describe below more sophisticated approaches that would

enable a more accurate estimate of this ratio. For practical

purposes, however, even a rough estimate has been demon-

strated here to be sufficient to indicate the likely presence or

absence of a particular state.

It is a practical advantage of the analysis presented here, as

with Bayesian methods in general, that it is easy to include

information about our prior expectations concerning the

refined parameters. The priors for the extra parameters h in

model B, here taken as uniform for simplicity, can easily be

made more informative if this is appropriate. In particular,

Gaussian priors Pð�jBÞ would continue to allow PðF2
ojBÞ to be

represented in closed form, as an analogue to equation (5). A

further advantage of this analysis is the ease with which it can

be extended to allow simultaneous comparison of three or

more models.

In fact, it is not strictly necessary to have a closed form for

PðF2
ojBÞ if the relevant integral can be evaluated numerically.

In particular, there is no actual need to make the approx-

imation of integrating over the entire real line to give equation

(5). However, this approximation does not make an important

difference to the Ockham factor [equation (12d)] in the

examples considered. Indeed, even in the case of the ‘dark’

data in x3.1, where �0 is very close to zero, making this

approximation would change O by only 0.02.

This test may prove most useful in marginal situations

where very low populations make it necessary to use very

strong restraints to stabilize the refinement. In such situations,

more informative prior distributions of the parameters along

the lines discussed above may still enable these populations to

be meaningfully described. For instance, in the examples

discussed above, little prior information about the expected

Uij values was used. If these can be estimated – perhaps, with

due precaution, from lower temperatures where higher

photogenerated populations can more readily be achieved –

this prior knowledge may help to detect remnant traces of the

photogenerated states at higher temperatures.

It should be noted, however, that the ‘very strong restraints’

referred to above in practice make the refinement more brutal

than typical cases. The background noise in the Fourier

difference density makes refinements unstable at populations

below about 3% if only reasonably soft restraints are placed

on atomic displacement parameters, and none on bond lengths

or angles (Brayshaw et al., 2010; Phillips et al., 2012). If this

method is to be useful in detecting populations below this

threshold, it will need to be carefully demonstrated that the

restraints involved act only to prevent convergence to physi-

cally implausible minima rather than forcing an unjustified

model upon the data.

This in turn will probably require a full Bayesian analysis of

the relevant model. The comparison proposed here uses

features from both Bayesian and conventional frequentist

analysis, in that the likelihood function PðF2
oj�Þ is approxi-

mated based on the results of a standard least-squares crys-

tallographic refinement [equation (3)]. This makes the test

very easy to use: one of its greatest strengths is that only

straightforward calculations from the Fc values output by any

standard crystallographic software are required. However, this

approach neglects the correlation between parameters in the

refinement, which will be significant; furthermore, it relies on

the potentially crude Gaussian approximation [equation (3)]

for the likelihood of each parameter.

The problem of correlation could be partially ameliorated

by incorporating the least-squares correlation matrix.

However, in order to obtain the full posterior parameter

distribution, which would give the truest picture of the

conclusions that can legitimately be drawn from a given data

set, a purely Bayesian refinement process would be needed. In

contrast to the simple calculations presented here, this

approach would require the use of Markov chain Monte Carlo
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Table 3
Comparison of models without (A) and with MS1 (B), for ‘light’ data collected from compound (1) as a function of time at 120 K.

t (h)

3.28 4.90 6.08 7.70 8.88 10.50 11.68 13.30 14.48

n 6326 6320 6286 6261 6259 6316 6280 6335 6338
pA 369 369 369 369 369 369 369 369 369
SA 1.217 1.226 1.234 1.205 1.197 1.211 1.214 1.220 1.214
pB 389 389 389 389 389 389 389 389 389
SB 1.202 1.218 1.227 1.199 1.193 1.208 1.212 1.218 1.212
�0(MS1) 0.072 0.057 0.053 0.051 0.041 0.038 0.034 0.035 0.035
�ð�0Þ 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
X �125.0 �75.5 �67.5 �57.9 �38.4 �33.7 �27.5 �28.0 �29.1
W �15.3 �10.2 �12.0 �9.9 �7.6 �7.1 �6.9 �7.6 �7.2
O 16.3 15.6 15.5 15.3 15.1 14.9 14.8 14.8 14.9
Total �124.0 �70.1 �64.0 �52.4 �30.9 �25.8 �19.6 �20.7 �21.4



or similar methods to sample the multidimensional posterior

distribution. Such calculations, however, are becoming main-

stream in many scientific applications; their application to

single-crystal refinements is a promising avenue for further

investigation.
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